3.6.22 \(\int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx\) [522]

3.6.22.1 Optimal result
3.6.22.2 Mathematica [A] (verified)
3.6.22.3 Rubi [A] (verified)
3.6.22.4 Maple [A] (verified)
3.6.22.5 Fricas [B] (verification not implemented)
3.6.22.6 Sympy [F]
3.6.22.7 Maxima [F(-2)]
3.6.22.8 Giac [F]
3.6.22.9 Mupad [F(-1)]

3.6.22.1 Optimal result

Integrand size = 36, antiderivative size = 237 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx=\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) (A+(2-i) B) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} a d}-\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) (A+(2-i) B) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} a d}+\frac {(i A-B) \sqrt {\cot (c+d x)}}{2 d (i a+a \cot (c+d x))}+\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) (A-(2+i) B) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{\sqrt {2} a d}-\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) (A-(2+i) B) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{\sqrt {2} a d} \]

output
(-1/8+1/8*I)*(A+(2-I)*B)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/a/d*2^(1/2)+( 
-1/8+1/8*I)*(A+(2-I)*B)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/a/d*2^(1/2)+(1/ 
16+1/16*I)*(A-(2+I)*B)*ln(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/a/d*2^(1/ 
2)-(1/16+1/16*I)*(A-(2+I)*B)*ln(1+cot(d*x+c)+2^(1/2)*cot(d*x+c)^(1/2))/a/d 
*2^(1/2)+1/2*(I*A-B)*cot(d*x+c)^(1/2)/d/(I*a+a*cot(d*x+c))
 
3.6.22.2 Mathematica [A] (verified)

Time = 3.38 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.57 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left ((A+i B) \sqrt {\tan (c+d x)}+\sqrt [4]{-1} (i A+B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right ) (-i+\tan (c+d x))-2 \sqrt [4]{-1} B \text {arctanh}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right ) (-i+\tan (c+d x))\right )}{2 a d (-i+\tan (c+d x))} \]

input
Integrate[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])) 
,x]
 
output
(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((A + I*B)*Sqrt[Tan[c + d*x]] + (-1 
)^(1/4)*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]]*(-I + Tan[c + d*x] 
) - 2*(-1)^(1/4)*B*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c + d*x]]]*(-I + Tan[c + d* 
x])))/(2*a*d*(-I + Tan[c + d*x]))
 
3.6.22.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.87, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.472, Rules used = {3042, 4064, 3042, 4079, 27, 3042, 4017, 25, 27, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))}dx\)

\(\Big \downarrow \) 4064

\(\displaystyle \int \frac {A \cot (c+d x)+B}{\sqrt {\cot (c+d x)} (a \cot (c+d x)+i a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B-A \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )} \left (-a \tan \left (c+d x+\frac {\pi }{2}\right )+i a\right )}dx\)

\(\Big \downarrow \) 4079

\(\displaystyle \frac {\int \frac {a (A-3 i B)-a (i A-B) \cot (c+d x)}{2 \sqrt {\cot (c+d x)}}dx}{2 a^2}+\frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (A-3 i B)-a (i A-B) \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx}{4 a^2}+\frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (A-3 i B)+a (i A-B) \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 a^2}+\frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {\int -\frac {a (A-3 i B-(i A-B) \cot (c+d x))}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{2 a^2 d}+\frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\int \frac {a (A-3 i B-(i A-B) \cot (c+d x))}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{2 a^2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\int \frac {A-3 i B-(i A-B) \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{2 a d}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (A-(2+i) B) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\left (\frac {1}{2}-\frac {i}{2}\right ) (A+(2-i) B) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{2 a d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (A-(2+i) B) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\left (\frac {1}{2}-\frac {i}{2}\right ) (A+(2-i) B) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )}{2 a d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (A-(2+i) B) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\left (\frac {1}{2}-\frac {i}{2}\right ) (A+(2-i) B) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )}{2 a d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (A-(2+i) B) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}+\left (\frac {1}{2}-\frac {i}{2}\right ) (A+(2-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )}{2 a d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (A-(2+i) B) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\left (\frac {1}{2}-\frac {i}{2}\right ) (A+(2-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )}{2 a d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (A-(2+i) B) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )+\left (\frac {1}{2}-\frac {i}{2}\right ) (A+(2-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )}{2 a d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) (A-(2+i) B) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )+\left (\frac {1}{2}-\frac {i}{2}\right ) (A+(2-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )}{2 a d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {(-B+i A) \sqrt {\cot (c+d x)}}{2 d (a \cot (c+d x)+i a)}-\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) (A+(2-i) B) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )+\left (\frac {1}{2}+\frac {i}{2}\right ) (A-(2+i) B) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )}{2 a d}\)

input
Int[(A + B*Tan[c + d*x])/(Sqrt[Cot[c + d*x]]*(a + I*a*Tan[c + d*x])),x]
 
output
((I*A - B)*Sqrt[Cot[c + d*x]])/(2*d*(I*a + a*Cot[c + d*x])) - ((1/2 - I/2) 
*(A + (2 - I)*B)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + ArcT 
an[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + (1/2 + I/2)*(A - (2 + I)*B)* 
(-1/2*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 + 
 Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]/(2*Sqrt[2])))/(2*a*d)
 

3.6.22.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4064
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp 
[g^(m + n)   Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d + c 
*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !Integer 
Q[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4079
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*( 
b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m 
 + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m 
- b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Free 
Q[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] 
 && LtQ[m, 0] &&  !GtQ[n, 0]
 
3.6.22.4 Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.54

method result size
derivativedivides \(\frac {\frac {4 \left (\frac {i A}{4}+\frac {B}{4}\right ) \arctan \left (\frac {2 \sqrt {\cot \left (d x +c \right )}}{\sqrt {2}-i \sqrt {2}}\right )}{\sqrt {2}-i \sqrt {2}}+\frac {i \left (-\frac {i \left (i A -B \right ) \sqrt {\cot \left (d x +c \right )}}{i+\cot \left (d x +c \right )}+\frac {4 i B \arctan \left (\frac {2 \sqrt {\cot \left (d x +c \right )}}{\sqrt {2}+i \sqrt {2}}\right )}{\sqrt {2}+i \sqrt {2}}\right )}{2}}{a d}\) \(127\)
default \(\frac {\frac {4 \left (\frac {i A}{4}+\frac {B}{4}\right ) \arctan \left (\frac {2 \sqrt {\cot \left (d x +c \right )}}{\sqrt {2}-i \sqrt {2}}\right )}{\sqrt {2}-i \sqrt {2}}+\frac {i \left (-\frac {i \left (i A -B \right ) \sqrt {\cot \left (d x +c \right )}}{i+\cot \left (d x +c \right )}+\frac {4 i B \arctan \left (\frac {2 \sqrt {\cot \left (d x +c \right )}}{\sqrt {2}+i \sqrt {2}}\right )}{\sqrt {2}+i \sqrt {2}}\right )}{2}}{a d}\) \(127\)

input
int((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)),x,method=_RETURNV 
ERBOSE)
 
output
1/a/d*(4*(1/4*I*A+1/4*B)/(2^(1/2)-I*2^(1/2))*arctan(2*cot(d*x+c)^(1/2)/(2^ 
(1/2)-I*2^(1/2)))+1/2*I*(-I*(I*A-B)*cot(d*x+c)^(1/2)/(I+cot(d*x+c))+4*I*B/ 
(2^(1/2)+I*2^(1/2))*arctan(2*cot(d*x+c)^(1/2)/(2^(1/2)+I*2^(1/2)))))
 
3.6.22.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 571 vs. \(2 (178) = 356\).

Time = 0.27 (sec) , antiderivative size = 571, normalized size of antiderivative = 2.41 \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx=\frac {{\left (a d \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{2} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (-\frac {2 \, {\left ({\left (i \, a d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{2} d^{2}}} + {\left (A - i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{i \, A + B}\right ) - a d \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{2} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (-\frac {2 \, {\left ({\left (-i \, a d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{2} d^{2}}} + {\left (A - i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{i \, A + B}\right ) - 2 \, a d \sqrt {\frac {i \, B^{2}}{a^{2} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (-\frac {{\left ({\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} - a d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i \, B^{2}}{a^{2} d^{2}}} + B\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a d}\right ) + 2 \, a d \sqrt {\frac {i \, B^{2}}{a^{2} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac {{\left ({\left (a d e^{\left (2 i \, d x + 2 i \, c\right )} - a d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i \, B^{2}}{a^{2} d^{2}}} - B\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{a d}\right ) + 2 \, {\left ({\left (A + i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - A - i \, B\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{8 \, a d} \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)),x, algorith 
m="fricas")
 
output
1/8*(a*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(- 
2*((I*a*d*e^(2*I*d*x + 2*I*c) - I*a*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e 
^(2*I*d*x + 2*I*c) - 1))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2)) + (A - I* 
B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - a*d*sqrt((I*A^2 
+ 2*A*B - I*B^2)/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(-2*((-I*a*d*e^(2*I*d*x 
 + 2*I*c) + I*a*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 
 1))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^2*d^2)) + (A - I*B)*e^(2*I*d*x + 2*I* 
c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - 2*a*d*sqrt(I*B^2/(a^2*d^2))*e^(2*I*d 
*x + 2*I*c)*log(-((a*d*e^(2*I*d*x + 2*I*c) - a*d)*sqrt((I*e^(2*I*d*x + 2*I 
*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(I*B^2/(a^2*d^2)) + B)*e^(-2*I*d*x 
 - 2*I*c)/(a*d)) + 2*a*d*sqrt(I*B^2/(a^2*d^2))*e^(2*I*d*x + 2*I*c)*log(((a 
*d*e^(2*I*d*x + 2*I*c) - a*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x 
 + 2*I*c) - 1))*sqrt(I*B^2/(a^2*d^2)) - B)*e^(-2*I*d*x - 2*I*c)/(a*d)) + 2 
*((A + I*B)*e^(2*I*d*x + 2*I*c) - A - I*B)*sqrt((I*e^(2*I*d*x + 2*I*c) + I 
)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/(a*d)
 
3.6.22.6 Sympy [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx=- \frac {i \left (\int \frac {A}{\tan {\left (c + d x \right )} \sqrt {\cot {\left (c + d x \right )}} - i \sqrt {\cot {\left (c + d x \right )}}}\, dx + \int \frac {B \tan {\left (c + d x \right )}}{\tan {\left (c + d x \right )} \sqrt {\cot {\left (c + d x \right )}} - i \sqrt {\cot {\left (c + d x \right )}}}\, dx\right )}{a} \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)**(1/2)/(a+I*a*tan(d*x+c)),x)
 
output
-I*(Integral(A/(tan(c + d*x)*sqrt(cot(c + d*x)) - I*sqrt(cot(c + d*x))), x 
) + Integral(B*tan(c + d*x)/(tan(c + d*x)*sqrt(cot(c + d*x)) - I*sqrt(cot( 
c + d*x))), x))/a
 
3.6.22.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)),x, algorith 
m="maxima")
 
output
Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negati 
ve exponent.
 
3.6.22.8 Giac [F]

\[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx=\int { \frac {B \tan \left (d x + c\right ) + A}{{\left (i \, a \tan \left (d x + c\right ) + a\right )} \sqrt {\cot \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*tan(d*x+c))/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c)),x, algorith 
m="giac")
 
output
integrate((B*tan(d*x + c) + A)/((I*a*tan(d*x + c) + a)*sqrt(cot(d*x + c))) 
, x)
 
3.6.22.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \tan (c+d x)}{\sqrt {\cot (c+d x)} (a+i a \tan (c+d x))} \, dx=\int \frac {A+B\,\mathrm {tan}\left (c+d\,x\right )}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )} \,d x \]

input
int((A + B*tan(c + d*x))/(cot(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)),x)
 
output
int((A + B*tan(c + d*x))/(cot(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)), x)